The new degree of comfort.™

Rheem Classic Plus® Series iR Packaged Gas Electric Unit

RGE(A/X)ZS

Cooling Efficiencies: 15.2 SEER2 Nominal Sizes: 2-5 Tons [7.0-17.6 kW]

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Rheem® is under license. Other trademarks and trade names are those of their respective owners.

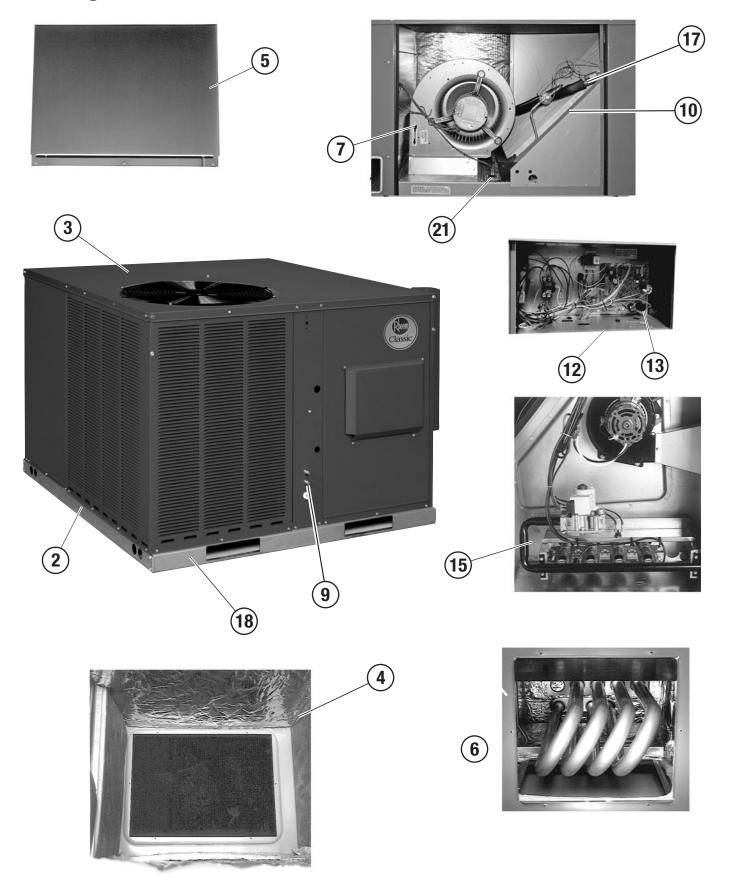

*Proper sizing and installation of equipment is critical to achieve optimal performance.

TABLE OF CONTENTS

Unit Features & Benefits	3-4
Model Number Identification	5
Options	6
Dimensional Data	7-10
Typical Installations	11
General Data	
General Data Notes	16
Gross Systems Performance Data	17-20
Airflow Targets	21
Electrical Data	22-23
Accessories	24-35
Limited Warranty	36

Packaged Gas Electric Unit Features:

FEATURES AND BENEFITS

- The Two-Stage Compressor modulates between two capacity settings—67% and 100%—providing more precise temperature control, lower humidity and greater efficiency in comparison to single stage compressors. It uses 70% fewer moving parts which also increases efficiency and reliability.
- 2. Louvered condenser compartment for protecting the coil against yard hazards and/or weather extremes.
- 3. One-piece top with a drip flange to help keep water out of the unit.
- Supply and return air openings feature a one-inch tall flange to prevent water migration into the ductwork.
- Access panels are easily removable and provide access to necessary components for serviceability.
- 6. Side and down discharge options available on all models. All models are shipped ready for horizontal application.
- 7. Easily accessible blower section complete with slide-out blower.
- Constant CFM Motor: Truly variable speed technology allows for ultimate humidity control, quieter sound levels and year-round energy savings.
- Refrigerant connections are conveniently located for easy service diagnostics.
- 10. Micro Channel evaporator and condenser delivers superior performance with less refrigerant charge and less weight than conventional copper tube/aluminum fin coils. In addition the all aluminum construction has superior protection against formicary corrosion and aluminum tube rubbing potential. It is easier to clean and has a more robust surface.

- 11. Draft inducer motor is easily accessible from furnace compartment, designed specially for quiet reliable operation. Together with the draft inducer motor, the in shot gas burners and manifold effectively regulate the flow of gas for combustion.
- 12. Easily accessible control box.
- 13. Single point wiring simplifies installation.
- 14. With the Rheem Contractor & EcoNet® Apps, built-in EcoNet® & Bluetooth® technology makes monitoring, troubleshooting and repairing the product easier than ever before.
- 15. Direct spark ignition with remote flame sensing—provides years of worry-free operation
- Dedicated heating speeds to maintain consistent performance via Constant CFM motor to keep temp rise at a comfortable level.
- Thermal expansion valve standard on all models for superior superheat control, reliability, and energy efficiency at all operating conditions.
- 18. Filter drier standard on all models (not shown).
- 19. Rugged baserail included for improved installation and handling.
- All units are complete factory charged and are factory quality run tested.
- 21. Molded compressor plugs.
- 22. A double sloped evaporator coil drain pan assures all water is removed from the unit to improve indoor air quality.

Pac	Packaged Gas Electric														
<u>R</u>	<u>R GE A Z S 024</u>		024	<u>A</u>	ī	$\bar{\textbf{7}}$ $\bar{\textbf{\Lambda}}$		<u>1</u>	<u>c</u>	<u>A</u>					
Brand	Product Category	Platform	Refrigerant	Tier	Capacity BTU/HR	Major Series	Voltage	Drive	Gas Heat Input	Gas Heat Configuration	Control	Minor Series			
R - Rheem	GE - Gas Electric	A - Resipack Convertible X - Resipack Convertible	Z - R410A	S - Mid Tier (15.2 SEER2)	024 - 24,000 [7.03 kW] 036 - 36,000 [10.55 kW] 048 - 48,000 [14.07 kW] 060 - 60,000 [17.58 kW]	A - 1st Design	J - 1ph, 208 - 230/60 C - 3ph, 208 - 230/60	V - Constant Volume	06 - 60K BTU/H 08 - 80K BTU/H 10 - 100K BTU/H	1 - Single Stage X - Single Stage Low NOx 2 - Two Stage T - Two Stage Low NOx	C - Communicating	A - 1st Design			

[] Designates Metric Conversions

Available Models									
Standard	Low NOx (40ng/J)								
RGEAZS024AJV061CA	RGEAZS024AJV06XCA								
RGEAZS036ACV061CA	RGEAZS036ACV06XCA								
RGEAZS036ACV081CA	RGEAZS036ACV08XCA								
RGEAZS036ACV101CA	RGEAZS036ACV10XCA								
RGEAZS036AJV061CA	RGEAZS036AJV06XCA								
RGEAZS036AJV081CA	RGEAZS036AJV08XCA								
RGEAZS036AJV101CA	RGEAZS036AJV10XCA								
RGEXZS048ACV082CA	RGEXZS048ACV08TCA								
RGEXZS048ACV102CA	RGEXZS048ACV10TCA								
RGEXZS048AJV082CA	RGEXZS048AJV08TCA								
RGEXZS048AJV102CA	RGEXZS048AJV10TCA								
RGEXZS060ACV082CA	RGEXZSO60ACV08TCA								
RGEXZS060ACV102CA	RGEXZS060ACV10TCA								
RGEXZS060AJV082CA	RGEXZSO60AJV08TCA								
RGEXZS060AJV102CA	RGEXZSO60AJV10TCA								

NOTE: Bold represents two stage heating models.

NOTE: Stainless steel heat exchanger option is available on standard and Low NOx models.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

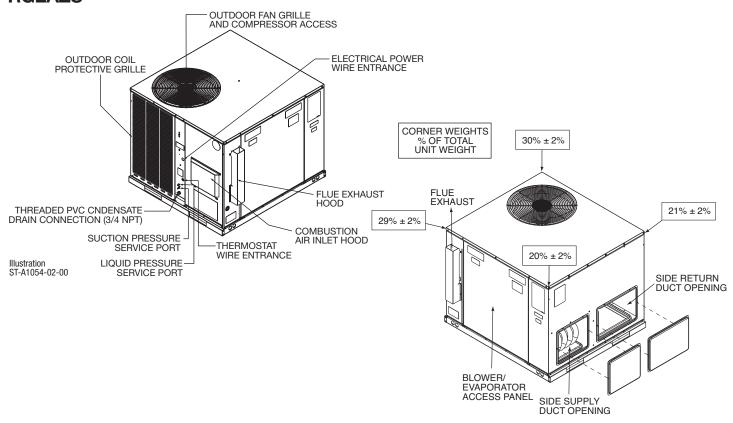
After a basic rooftop model is selected, choose a *three-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

FACTORY INSTALLED OPTION CODES

Option	Stainless Steel
Code	Heat Exchanger
AJA	Х

"x" indicates factory installed option.

Example: No Option

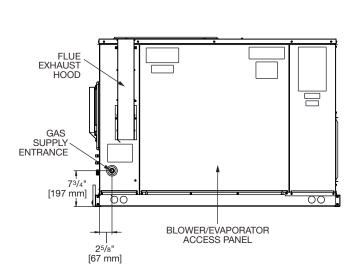

RGEAZS036AJV081CA

Example: Option with Stainless Steel Heat Exchanger

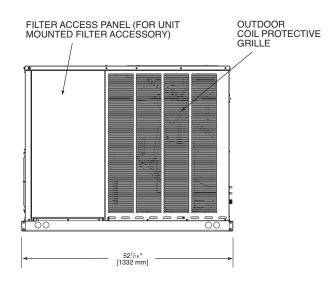
RGEAZS036AJV081CAAJA

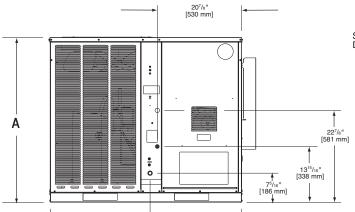
NOTES: Factory installed economizer is not available.

UNIT DIMENSIONS RGEAZS

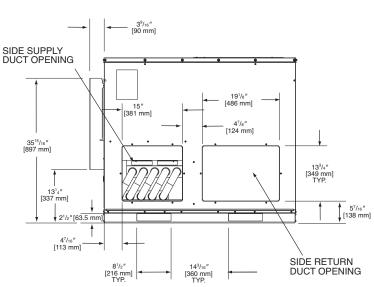

47⁹/₁₆" [1208 mm] 50¹³/₁₆" [1290 mm] **OUTDOOR FAN** GRILLE & COMPRESSOR ACCESS

TOP VIEW


BOTTOM VIEW 45¹/₁₆" [1145 mm] INSIDE 1³/₁₆" [30 mm] TYP. 1¹/₂" [38 mm] TYP. BOTTOM RETURN DUCT OPENING 49⁷/₁₆" [1256 mm] INSIDE . 19¹/₂" . [495 mm] воттом SUPPLY DUCT OPENING 3³/₁₆" [97 mm] 4⁹/₁₀" [125 mm]

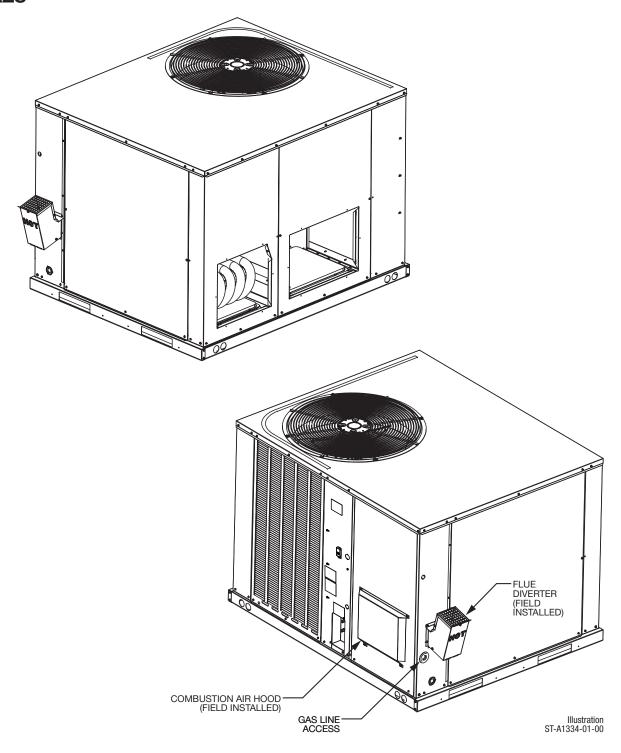

SIDE VIEW

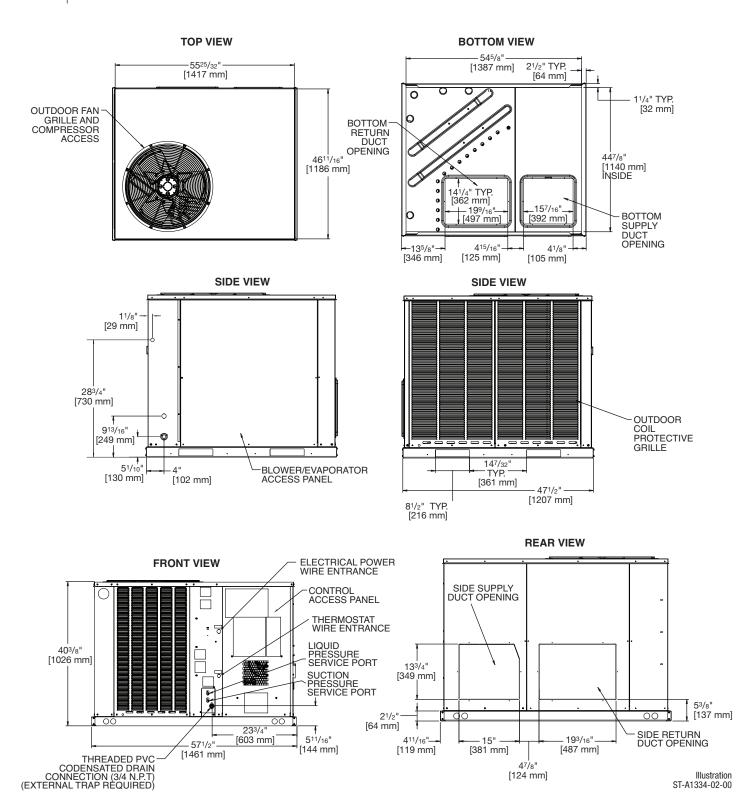
SIDE VIEW

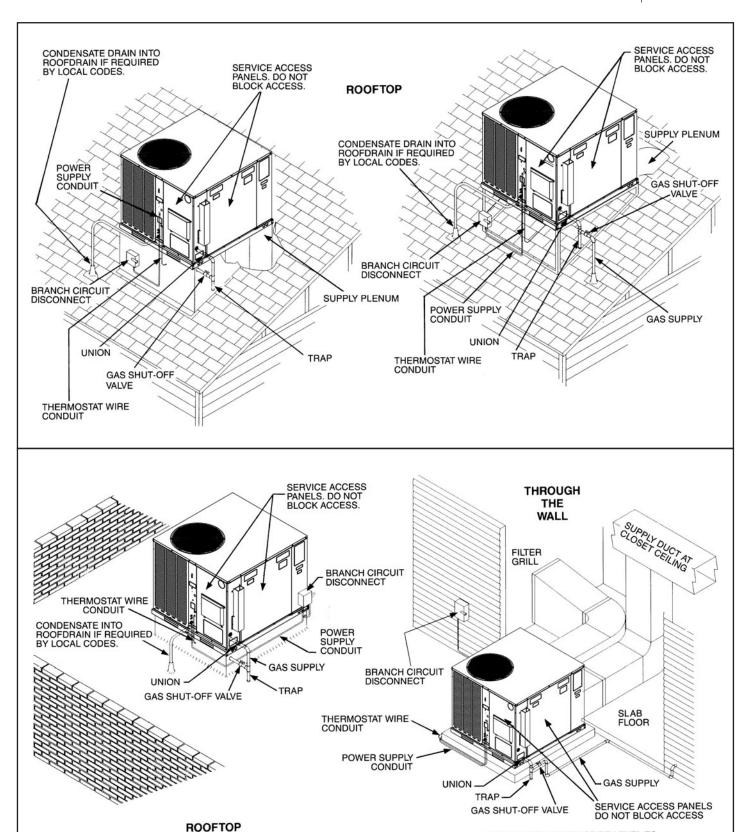

FRONT VIEW

22¹¹/₁₆" [576 mm]

47¹/₂" [1207 mm]

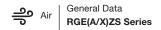

BACK VIEW




SHOWN WITH DUCT COVERS REMOVED.

Models RGEAZS	Height "A"
024	35 ¹⁵ /16"
036	41"

UNIT DIMENSIONS RGEXZS

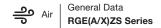


[] Designates Metric Conversions

IMPORTANT: UNIT MUST BE LEVEL TO PREVENT WATER MIGRATION

NOMINAL SIZES 2-3 TONS [7.0-10.5 kW] SINGLE-STAGE GAS HEAT

Model RGEAZS Series	024AJV061	036ACV061	036ACV081	036ACV101
Cooling Performance ¹				CONTINUED —
Gross Cooling Capacity Btu [kW]	24,200 [7.09]	35,800 [10.49]	35,800 [10.49]	35,800 [10.49]
EER2/SEER22	11.5/15.2	11.5/15.2	11.5/15.2	11.5/15.2
EER/SEER ²	_	12/16	12/16	12/16
Nominal CFM/AHRI Rated CFM [L/s]	800/815 [378/385]	1200/1200 [566/566]	1200/1200 [566/566]	1200/1200 [566/566]
AHRI Net Cooling Capacity Btu [kW]	23,400 [6.86]	35,000 [10.25]	35,000 [10.25]	35,000 [10.25]
Net Sensible Capacity Btu [kW]	16,600 [4.86]	25,800 [7.56]	25,800 [7.56]	25,800 [7.56]
Net Latent Capacity Btu [kW]	6,800 [1.99]	9,200 [2.7]	9,200 [2.7]	9,200 [2.7]
Net System Power kW	1.98	2.86	2.86	2.86
Heating Performance (Gas) ⁴				
Heating Input Btu [kW]	60,000 [17.58]	60,000 [17.58]	80,000 [23.44]	100,000 [29.3]
Heating Output Btu [kW]	48,600 [14.24]	48,600 [14.24]	64,800 [18.99]	81,000 [23.73]
Temperature Rise Range °F [°C]	40-70 [22-38]	40-70 [22-38]	35-65 [19-36]	45-75 [25-41]
AFUE %	81	81	81	81
Steady State Efficiency (%)	81	81	81	81
No. Burners	3	3	4	5
No. Stages	1	3 1	1	1
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]
	0.5 [12.7]	0.3 [12.7]	0.0 [12.7]	0.0 [12.7]
Compressor No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ⁵	74	71	71	71
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
**				
MicroChannel Depth in. [mm]	0.709 [18]	0.472 [12]	0.472 [12]	0.472 [12]
Face Area sq. ft. [sq. m]	9.77 [0.91]	16.26 [1.51]	16.26 [1.51]	16.26 [1.51]
Rows/FPI [FPcm]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	3.54 [0.33]	4 [0.37]	4 [0.37]	4 [0.37]
Rows/FPI [FPcm]	1/20 [8]	1/20 [8]	1/20 [8]	1/20 [8]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/22 [558.8]	1/22 [558.8]	1/22 [558.8]	1/22 [558.8]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	2500 [1180]	3250 [1534]	3250 [1534]	3250 [1534]
No. Motors/HP	1 at 1/6 HP	1 at 1/3 HP	1 at 1/3 HP	1 at 1/3 HP
Motor RPM	825	825	825	825
ndoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/10x9 [254x229]	1/12x9 [305x229]	1/12x9 [305x229]	1/12x9 [305x229]
Drive Type	Direct	Direct	Direct	Direct
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	1/3	1	1	1
Motor RPM	1050	1050	1050	1050
Motor Frame Size	48	48	48	48
Filter - Type	Field Supplied	Field Supplied	Field Supplied	Field Supplied
Furnished	No	No	No	No
(NO.) Size Recommended in. [mm x mm x mm]				
	(1)1x24x24 [25x610x610]	(1)1x24x24 [25x610x610]	(1)1x24x24 [25x610x610]	(1)1x24x24 [25x610x610
Refrigerant Charge Oz. [g]	48 [1361]	60 [1701]	60 [1701]	60 [1701]
Weights	402 (402)	440 [000]	445 [000]	4E0 [004]
Net Weight lbs. [kg]	403 [183]	440 [200] 450 [204]	445 [202] 455 [206]	450 [204]
Ship Weight lbs. [kg]	413 [187]	450 [204]	455 [206]	460 [209]

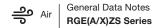

See Page 16 for Notes.

NOMINAL SIZES 2-3 TONS [7.0-10.5 kW] SINGLE-STAGE GAS HEAT (CON'T.)

36,200 [10.61] 11.5/15.2 — 1200/1200 [566/566] 35,000 [10.25] 25,800 [7.56] 9,200 [2.7]	36,200 [10.61] 11.5/15.2 — 1200/1200 [566/566] 35,000 [10.25]	36,200 [10.61] 11.5/15.2 —	
11.5/15.2 — 1200/1200 [566/566] 35,000 [10.25] 25,800 [7.56] 9,200 [2.7]	11.5/15.2 — 1200/1200 [566/566]	11.5/15.2	
11.5/15.2 — 1200/1200 [566/566] 35,000 [10.25] 25,800 [7.56] 9,200 [2.7]	— 1200/1200 [566/566]	_	
35,000 [10.25] 25,800 [7.56] 9,200 [2.7]			
35,000 [10.25] 25,800 [7.56] 9,200 [2.7]		4000/4000 FE00/E003	
25,800 [7.56] 9,200 [2.7]	35 000 [10 25]	1200/1200 [566/566]	
9,200 [2.7]	00,000 [10.20]	35,000 [10.25]	
9,200 [2.7]	25,800 [7.56]	25,800 [7.56]	
	9,200 [2.7]	9,200 [2.7]	
2.94	2.94	2.94	
<u> </u>	-	· · · · · · · · · · · · · · · · · · ·	
60.000 [17.58]	80.000 [23.44]	100.000 [29.3]	
		1	
•	•	I 0.5 [12.7]	
0.0 [12.7]	0.0 [12.7]	0.0 [12.7]	
1/Coroll	1/Scroll	1/Scroll	
= =			
TX Valves		TX Valves	
1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	
Propeller	Propeller	Propeller	
1/22 [558.8]	1/22 [558.8]	1/22 [558.8]	
Direct/1	Direct/1	Direct/1	
3250 [1534]	3250 [1534]	3250 [1534]	
1 at 1/3 HP	1 at 1/3 HP	1 at 1/3 HP	
825	825	825	
FC Centrifugal	FC Centrifugal	FC Centrifugal	
1/12x9 [305x229]	1/12x9 [305x229]	1/12x9 [305x229]	
Direct	Direct	Direct	
Multiple	Multiple	Multiple	
1	1	1	
1	1	1	
1050	1050	1050	
48	48	48	
No	No	No	
60 [1701]		60 [1701]	
s= f=.1	se fine d		
440 [200]	445 [202]	450 [204]	
	Propeller 1/22 [558.8]	48,600 [14.24] 64,800 [18.99] 40-70 [22-38] 35-65 [19-36] 81 81 81 81 81 3 4 1 1 1 0.5 [12.7] 0.5 [12.7] 1/Scroll 1/Scroll 71 71 Louvered Louvered MicroChannel MicroChannel 0.472 [12] 0.472 [12] 16.26 [1.51] 16.26 [1.51] 1/23 [9] 1/23 [9] Louvered Louvered MicroChannel MicroChannel 1 [25.4] 1 [25.4] 4 [0.37] 4 [0.37] 1/20 [8] 1/20 [8] TX Valves TX Valves 1/0.75 [19.05] 1/0.75 [19.05] Propeller Propeller 1/22 [558.8] 1/22 [558.8] Direct/1 Direct/1 3250 [1534] 3250 [1534] 1 at 1/3 HP 1 at 1/3 HP 825 825 FC Centrifugal FC Centrifugal 1/12x9 [305x229] 1/12x9 [305x229] Direct Direct Multiple Multiple 1 1 1 1 1 1 1050 1050 48 48 48 Field Supplied Field Supplied No No (1)1x24x24 [25x610x610] (1)1x24x24 [25x610x610] 60 [1701] 60 [1701]	48,600 [14,24] 64,800 [18,99] 81,000 [23,73] 40-70 [22-38] 35-65 [19-36] 45-75 [25-41] 81 81 81 81 81 81 81 81 81 81 81 9.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

See Page 16 for Notes.

NOMINAL SIZES 4-5 TONS [14-17.6 kW] TWO-STAGE GAS HEAT


Model RGEXZS Series	048ACV082	048ACV102	048AJV082	048AJV102
Cooling Performance ¹				CONTINUED —
Gross Cooling Capacity Btu [kW]	48,500 [14.21]	48,500 [14.21]	49,000 [14.36]	49,000 [14.36]
EER2/SEER22	11.5/15.2	11.5/15.2	11.5/15.2	11.5/15.2
EER/SEER2	12/16	12/16	_	_
Nominal CFM/AHRI Rated CFM [L/s]	1600/1525 [755/720]	1600/1525 [755/720]	1600/1525 [755/720]	1600/1525 [755/720]
AHRI Net Cooling Capacity Btu [kW]	47,500 [13.92]	47,500 [13.92]	47,500 [13.92]	47,500 [13.92]
Net Sensible Capacity Btu [kW]	33,300 [9.76]	33,300 [9.76]	33,300 [9.76]	33,300 [9.76]
Net Latent Capacity Btu [kW]	14,200 [4.16]	14,200 [4.16]	14,200 [4.16]	14,200 [4.16]
Net System Power kW	3.84	3.84	3.94	3.94
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage/2nd Stage)	56,000/80,000 [16.41/23.44]	70,000/100,000 [20.51/29.3]	56,000/80,000 [16.41/23.44]	70,000/100,000 [20.51/29.3
Heating Output Btu [kW] (1st Stage/2nd Stage)	45,360/64,800 [13.29/18.99]	56,700/81,000 [16.61/23.73]	45,360/64,800 [13.29/18.99]	56,700/81,000 [16.61/23.73
Temperature Rise Range °F [°C]	25-55 [13.9-30.6]/	25-55 [13.9-30.6]/	25-55 [13.9-30.6]/	25-55 [13.9-30.6]/
(1st Stage/2nd Stage)	35-65 [19.4-36.1]	35-65 [19.4-36.1]	35-65 [19.4-36.1]	35-65 [19.4-36.1]
AFUE %	81	81	81	81
Steady State Efficiency (%)	81	81	81	81
No. Burners	4	5	4	5
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]
Compressor				
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ⁵	81	81	81	81
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
· • •	15.98 [1.48]			
Face Area sq. ft. [sq. m] Rows/FPI [FPcm]		15.98 [1.48]	15.98 [1.48]	15.98 [1.48]
<u> </u>	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	7.07 [0.66]	7.07 [0.66]	7.07 [0.66]	7.07 [0.66]
Rows/FPI [FPcm]	1/20 [8]	1/20 [8]	1/20 [8]	1/20 [8]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	4300 [2029]	4300 [2029]	4300 [2029]	4300 [2029]
No. Motors/HP	1 at 1/3 HP	1 at 1/3 HP	1 at 1/3 HP	1 at 1/3 HP
Motor RPM	1050	1050	1050	1050
Indoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/12x9 [305x229]	1/12x9 [305x229]	1/12x9 [305x229]	1/12x9 [305x229]
Drive Type	Direct	Direct	Direct	Direct
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	1	1	1	1
Motor RPM	1050	1050	1050	1050
Motor Frame Size	48	48	48	48
Filter - Type	Field Supplied	Field Supplied	Field Supplied	Field Supplied
Furnished	No	No	No	No
(NO.) Size Recommended in. [mm x mm x mm]	(2)1x16x30 [25x406x762]	(2)1x16x30 [25x406x762]	(2)1x16x30 [25x406x762]	(2)1x16x30 [25x406x762]
Refrigerant Charge Oz. [g]	90 [2552]	90 [2552]	90 [2552]	90 [2552]
Weights	30 [2002]	30 [2332]	30 [2332]	90 [2002]
•	EUE [330]	E10 [001]	EUE [330]	E10 [331]
Net Weight lbs. [kg]	505 [229]	510 [231]	505 [229]	510 [231]
Ship Weight lbs. [kg]	515 [234]	520 [236]	515 [234]	520 [236]

See Page 16 for Notes.

NOMINAL SIZES 4-5 TONS [14-17.6 kW] TWO-STAGE GAS HEAT (CON'T.)

Model RGEXZS Series	060ACV082	060ACV102	060AJV082	060AJV102
Cooling Performance ¹				
Gross Cooling Capacity Btu [kW]	59,000 [17.29]	59,000 [17.29]	59,000 [17.29]	59,000 [17.29]
EER2/SEER22	11.5/15.2	11.5/15.2	11.5/15.2	11.5/15.2
EER/SEER2	11.5/15.2	11.5/15.2	_	_
Nominal CFM/AHRI Rated CFM [L/s]	2000/1800 [944/849]	2000/1800 [944/849]	2000/1800 [944/849]	2000/1800 [944/849]
AHRI Net Cooling Capacity Btu [kW]	57,000 [16.7]	57,000 [16.7]	57,000 [16.7]	57,000 [16.7]
Net Sensible Capacity Btu [kW]	39,000 [11.43]	39,000 [11.43]	39,000 [11.43]	39,000 [11.43]
Net Latent Capacity Btu [kW]	18,000 [5.27]	18,000 [5.27]	18,000 [5.27]	18,000 [5.27]
Net System Power kW	4.82	4.82	5	5
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage/2nd Stage)	56,000/80,000 [16.41/23.44]	70,000/100,000 [20.51/29.3]	56,000/80,000 [16.41/23.44]	70,000/100,000 [20.51/29.3
Heating Output Btu [kW] (1st Stage/2nd Stage)	45,360/64,800 [13.29/18.99]	56,700/81,000 [16.61/23.73]	45,360/64,800 [13.29/18.99]	56,700/81,000 [16.61/23.73
Temperature Rise Range °F [°C]	25-55 [13.9-30.6]/	25-55 [13.9-30.6]/	25-55 [13.9-30.6]/	25-55 [13.9-30.6]/
(1st Stage/2nd Stage)	35-65 [19.4-36.1]	35-65 [19.4-36.1]	35-65 [19.4-36.1]	35-65 [19.4-36.1]
AFUE %	81	81	81	81
Steady State Efficiency (%)	81	81	81	81
No. Burners	4	5	4	5
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]
Compressor				
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ⁵	83	83	83	83
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	15.98 [1.48]	15.98 [1.48]	15.98 [1.48]	15.98 [1.48]
Rows/FPI [FPcm]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]
Face Area sq. ft. [sq. m]	6.96 [0.65]	6.96 [0.65]	6.96 [0.65]	6.96 [0.65]
Rows/FPI [FPcm]	1/20 [8]	1/20 [8]	1/20 [8]	1/20 [8]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]				
No. Motors/HP	4300 [2029] 1 at 1/3 HP	4300 [2029]	4300 [2029]	4300 [2029] 1 at 1/3 HP
Motor RPM		1 at 1/3 HP	1 at 1/3 HP	
	1050	1050	1050	1050
Indoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/12x9 [305x229]	1/12x9 [305x229]	1/12x9 [305x229]	1/12x9 [305x229]
Drive Type	Direct	Direct	Direct	Direct
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	1	1	1	1
Motor RPM	1050	1050	1050	1050
Motor Frame Size	48	48	48	48
Filter - Type	Field Supplied	Field Supplied	Field Supplied	Field Supplied
Furnished	No	No	No	No
(NO.) Size Recommended in. [mm x mm x mm]	(2)1x16x30 [25x406x762]	(2)1x16x30 [25x406x762]	(2)1x16x30 [25x406x762]	(2)1x16x30 [25x406x762]
Refrigerant Charge Oz. [g]	100 [2835]	100 [2835]	100 [2835]	100 [2835]
Weights				
Net Weight lbs. [kg]	510 [231]	515 [234]	515 [234]	515 [234]

NOTES:

- 1. Cooling Performance is rated at 95°F ambient, 80°F entering dry bulb, 67°F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.
- 2. EER2 and/or SEER2 are rated at AHRI conditions and in accordance with DOE test procedures for 1-Phase models. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures for 3-Phase models.
- 3. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- 4. AFUE is rated in accordance with DOE test procedures.
- 5. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

COOLING PERFORMANCE DATA-RGEAZS024A

ENTERING INDOOR AIR @ 80°F [26.7°C] dbE ①											
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CFM [L/s]		900 [425]	825 [389]	650 [307]	900 [425]	825 [389]	650 [307]	900 [425]	825 [389]	650 [307]
		DR ①	.05	.09	.12	.05	.09	.12	.05	.09	.12
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	28.7 [8.4] 16.1 [4.7] 1.7	28.2 [8.3] 15.5 [4.5] 1.7	27.1 [7.9] 13.9 [4.1] 1.6	27.1 [7.9] 19.4 [5.7] 1.7	26.6 [7.8] 18.6 [5.5] 1.7	25.6 [7.5] 16.7 [4.9] 1.6	25.7 [7.5] 23.4 [6.9] 1.7	25.3 [7.4] 22.4 [6.6] 1.6	24.3 [7.1] 20.2 [5.9] 1.6
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	28.0 [8.2] 15.3 [4.5] 1.8	27.5 [8.1] 14.7 [4.3] 1.7	26.4 [7.7] 13.3 [3.9] 1.7	26.4 [7.7] 18.6 [5.5] 1.7	25.9 [7.6] 17.8 [5.2] 1.7	24.9 [7.3] 16.1 [4.7] 1.7	25.0 [7.3] 22.6 [6.6] 1.7	24.6 [7.2] 21.6 [6.3] 1.7	23.7 [6.9] 19.5 [5.7] 1.7
OUTDOOR	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	27.2 [8.0] 14.7 [4.3] 1.8	26.8 [7.9] 14.1 [4.1] 1.8	25.8 [7.6] 12.7 [3.7] 1.8	25.6 [7.5] 17.9 [5.2] 1.8	25.2 [7.4] 17.2 [5.0] 1.8	24.2 [7.1] 15.5 [4.5] 1.8	24.3 [7.1] 21.9 [6.4] 1.8	23.9 [7.0] 21.0 [6.2] 1.8	23.0 [6.7] 18.9 [5.5] 1.8
	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	26.5 [7.8] 14.1 [4.1] 1.9	26.0 [7.6] 13.5 [4.0] 1.9	25.0 [7.3] 12.2 [3.6] 1.9	24.9 [7.3] 17.3 [5.1] 1.9	24.5 [7.2] 16.6 [4.9] 1.9	23.5 [6.9] 15.0 [4.4] 1.9	23.5 [6.9] 21.3 [6.2] 1.9	23.2 [6.8] 20.4 [6.0] 1.9	22.3 [6.5] 18.4 [5.4] 1.8
D R Y B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	25.7 [7.5] 13.6 [4.0] 2.0	25.3 [7.4] 13.1 [3.8] 2.0	24.3 [7.1] 11.8 [3.5] 2.0	24.1 [7.1] 16.9 [5.0] 2.0	23.7 [6.9] 16.2 [4.7] 2.0	22.8 [6.7] 14.6 [4.3] 1.9	22.8 [6.7] 20.8 [6.1] 2.0	22.4 [6.6] 20.0 [5.9] 2.0	21.5 [6.3] 18.0 [5.3] 1.9
BULB T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	24.9 [7.3] 13.3 [3.9] 2.1	24.5 [7.2] 12.7 [3.7] 2.1	23.6 [6.9] 11.5 [3.4] 2.1	23.3 [6.8] 16.5 [4.8] 2.1	22.9 [6.7] 15.8 [4.6] 2.1	22.0 [6.4] 14.3 [4.2] 2.0	22.0 [6.4] 20.5 [6.0] 2.1	21.6 [6.3] 19.7 [5.8] 2.1	20.8 [6.1] 17.7 [5.2] 2.0
TEMPERATURE	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	24.1 [7.1] 13.0 [3.8] 2.2	23.7 [6.9] 12.5 [3.7] 2.2	22.8 [6.7] 11.3 [3.3] 2.2	22.5 [6.6] 16.3 [4.8] 2.2	22.1 [6.5] 15.6 [4.6] 2.2	21.3 [6.2] 14.1 [4.1] 2.2	21.2 [6.2] 20.2 [5.9] 2.2	20.8 [6.1] 19.4 [5.7] 2.2	20.0 [5.9] 17.5 [5.1] 2.1
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	23.2 [6.8] 12.9 [3.8] 2.3	22.9 [6.7] 12.4 [3.6] 2.3	22.0 [6.4] 11.1 [3.3] 2.3	21.6 [6.3] 16.1 [4.7] 2.3	21.3 [6.2] 15.5 [4.5] 2.3	20.5 [6.0] 13.9 [4.1] 2.3	20.3 [5.9] 20.1 [5.9] 2.3	20.0 [5.9] 19.3 [5.7] 2.3	19.2 [5.6] 17.4 [5.1] 2.2
E °F (°C)	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	22.4 [6.6] 12.9 [3.8] 2.5	22.0 [6.4] 12.3 [3.6] 2.4	21.2 [6.2] 11.1 [3.3] 2.4	20.8 [6.1] 16.1 [4.7] 2.4	20.4 [6.0] 15.4 [4.5] 2.4	19.6 [5.7] 13.9 [4.1] 2.4	19.4 [5.7] 19.4 [5.7] 2.4	19.1 [5.6] 19.1 [5.6] 2.4	18.4 [5.4] 17.4 [5.1] 2.4
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	21.5 [6.3] 12.9 [3.8] 2.6	21.1 [6.2] 12.4 [3.6] 2.6	20.3 [5.9] 11.2 [3.3] 2.5	19.9 [5.8] 16.2 [4.7] 2.6	19.6 [5.7] 15.5 [4.5] 2.5	18.8 [5.5] 14.0 [4.1] 2.5	18.6 [5.5] 18.6 [5.5] 2.6	18.3 [5.4] 18.3 [5.4] 2.5	17.6 [5.2] 17.4 [5.1] 2.5
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	20.6 [6.0] 13.1 [3.8] 2.7	20.2 [5.9] 12.6 [3.7] 2.7	19.5 [5.7] 11.3 [3.3] 2.6	19.0 [5.6] 16.4 [4.8] 2.7	18.7 [5.5] 15.7 [4.6] 2.7	17.9 [5.2] 14.1 [4.1] 2.6	17.6 [5.2] 17.6 [5.2] 2.7	17.4 [5.1] 17.4 [5.1] 2.7	16.7 [4.9] 16.7 [4.9] 2.6

DR —Depression ratio dbE —Entering air dry bulb

wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

COOLING PERFORMANCE DATA-RGEAZS036A

				EN	ITERING INDOC	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
CFM [L/s]		1325 [625]	1200 [566]	950 [448]	1325 [625]	1200 [566]	950 [448]	1325 [625]	1200 [566]	950 [448]	
		DR ①	.05	.09	.12	.05	.09	.12	.05	.09	.12
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	43.6 [12.8] 25.0 [7.3] 2.5	42.8 [12.5] 23.8 [7.0] 2.5	41.2 [12.1] 21.5 [6.3] 2.5	41.1 [12.0] 29.9 [8.8] 2.5	40.3 [11.8] 28.5 [8.4] 2.5	38.8 [11.4] 25.8 [7.6] 2.4	38.5 [11.3] 34.2 [10.0] 2.5	37.8 [11.1] 32.6 [9.6] 2.5	36.4 [10.7] 29.4 [8.6] 2.4
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	42.4 [12.4] 24.3 [7.1] 2.6	41.6 [12.2] 23.1 [6.8] 2.6	40.0 [11.7] 20.9 [6.1] 2.6	39.8 [11.7] 29.2 [8.6] 2.6	39.1 [11.5] 27.8 [8.1] 2.6	37.6 [11.0] 25.1 [7.4] 2.5	37.3 [10.9] 33.5 [9.8] 2.6	36.6 [10.7] 31.9 [9.3] 2.6	35.2 [10.3] 28.8 [8.4] 2.5
OUTDOOR	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	41.2 [12.1] 23.6 [6.9] 2.8	40.4 [11.8] 22.5 [6.6] 2.7	38.9 [11.4] 20.3 [5.9] 2.7	38.6 [11.3] 28.5 [8.4] 2.7	37.9 [11.1] 27.2 [8.0] 2.7	36.5 [10.7] 24.6 [7.2] 2.6	36.1 [10.6] 32.8 [9.6] 2.7	35.4 [10.4] 31.3 [9.2] 2.7	34.1 [10.0] 28.2 [8.3] 2.6
	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	39.9 [11.7] 23.0 [6.7] 2.9	39.2 [11.5] 21.9 [6.4] 2.8	37.7 [11.0] 19.8 [5.8] 2.8	37.4 [11.0] 27.9 [8.2] 2.8	36.7 [10.8] 26.6 [7.8] 2.8	35.3 [10.3] 24.0 [7.0] 2.8	34.9 [10.2] 32.2 [9.4] 2.8	34.2 [10.0] 30.7 [9.0] 2.8	32.9 [9.6] 27.7 [8.1] 2.7
DRY B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	38.7 [11.3] 22.4 [6.6] 3.0	38.0 [11.1] 21.3 [6.2] 3.0	36.6 [10.7] 19.3 [5.7] 2.9	36.2 [10.6] 27.3 [8.0] 3.0	35.5 [10.4] 26.0 [7.6] 2.9	34.2 [10.0] 23.5 [6.9] 2.9	33.6 [9.8] 31.6 [9.3] 2.9	33.0 [9.7] 30.1 [8.8] 2.9	31.8 [9.3] 27.2 [8.0] 2.9
B U L B	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	37.5 [11.0] 21.8 [6.4] 3.1	36.8 [10.8] 20.8 [6.1] 3.1	35.4 [10.4] 18.8 [5.5] 3.1	35.0 [10.3] 26.8 [7.9] 3.1	34.3 [10.1] 25.5 [7.5] 3.1	33.0 [9.7] 23.0 [6.7] 3.0	32.4 [9.5] 31.0 [9.1] 3.1	31.8 [9.3] 29.6 [8.7] 3.1	30.6 [9.0] 26.7 [7.8] 3.0
TEMPERAT	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	36.3 [10.6] 21.3 [6.2] 3.3	35.6 [10.4] 20.3 [5.9] 3.3	34.3 [10.1] 18.3 [5.4] 3.2	33.7 [9.9] 26.2 [7.7] 3.3	33.1 [9.7] 25.0 [7.3] 3.2	31.9 [9.3] 22.6 [6.6] 3.2	31.2 [9.1] 30.5 [8.9] 3.2	30.6 [9.0] 29.1 [8.5] 3.2	29.5 [8.6] 26.3 [7.7] 3.1
RATURE	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	35.1 [10.3] 20.8 [6.1] 3.4	34.4 [10.1] 19.9 [5.8] 3.4	33.1 [9.7] 17.9 [5.2] 3.3	32.5 [9.5] 25.8 [7.6] 3.4	31.9 [9.3] 24.6 [7.2] 3.4	30.7 [9.0] 22.2 [6.5] 3.3	30.0 [8.8] 30.0 [8.8] 3.4	29.4 [8.6] 28.6 [8.4] 3.4	28.3 [8.3] 25.9 [7.6] 3.3
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	33.8 [9.9] 20.4 [6.0] 3.6	33.2 [9.7] 19.5 [5.7] 3.6	32.0 [9.4] 17.6 [5.2] 3.5	31.3 [9.2] 25.3 [7.4] 3.6	30.7 [9.0] 24.2 [7.1] 3.5	29.6 [8.7] 21.8 [6.4] 3.5	28.8 [8.4] 28.8 [8.4] 3.6	28.2 [8.3] 28.2 [8.3] 3.5	27.2 [8.0] 25.5 [7.5] 3.5
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	32.6 [9.6] 20.0 [5.9] 3.8	32.0 [9.4] 19.1 [5.6] 3.7	30.8 [9.0] 17.2 [5.0] 3.7	30.1 [8.8] 24.9 [7.3] 3.8	29.5 [8.6] 23.8 [7.0] 3.7	28.4 [8.3] 21.5 [6.3] 3.7	27.5 [8.1] 27.5 [8.1] 3.7	27.0 [7.9] 27.0 [7.9] 3.7	26.0 [7.6] 25.1 [7.4] 3.6
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	31.4 [9.2] 19.7 [5.8] 4.0	30.8 [9.0] 18.7 [5.5] 3.9	29.7 [8.7] 16.9 [5.0] 3.9	28.9 [8.5] 24.6 [7.2] 3.9	28.3 [8.3] 23.4 [6.9] 3.9	27.3 [8.0] 21.2 [6.2] 3.8	26.3 [7.7] 26.3 [7.7] 3.9	25.8 [7.6] 25.8 [7.6] 3.9	24.9 [7.3] 24.8 [7.3] 3.8

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

COOLING PERFORMANCE DATA-RGEXZS048A

				EN	ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CFM [L/s]		1850 [873]	1525 [720]	1325 [625]	1850 [873]	1525 [720]	1325 [625]	1850 [873]	1525 [720]	1325 [625]
	DR ①		.05	.09	.12	.05	.09	.12	.05	.09	.12
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	61.4 [18.0] 35.3 [10.3] 3.5	59.2 [17.4] 32.1 [9.4] 3.5	57.7 [16.9] 30.2 [8.9] 3.4	57.2 [16.8] 41.1 [12.0] 3.5	55.1 [16.1] 37.4 [11.0] 3.4	53.8 [15.8] 35.1 [10.3] 3.4	53.2 [15.6] 46.2 [13.5] 3.5	51.2 [15.0] 42.1 [12.3] 3.4	50.0 [14.7] 39.5 [11.6] 3.4
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	60.0 [17.6] 34.7 [10.2] 3.7	57.8 [16.9] 31.6 [9.3] 3.6	56.4 [16.5] 29.6 [8.7] 3.6	55.8 [16.4] 40.4 [11.8] 3.6	53.7 [15.7] 36.8 [10.8] 3.6	52.4 [15.4] 34.5 [10.1] 3.5	51.8 [15.2] 45.6 [13.4] 3.6	49.8 [14.6] 41.5 [12.2] 3.5	48.6 [14.2] 38.9 [11.4] 3.5
OUTDOOR	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	58.5 [17.1] 34.0 [10.0] 3.8	56.3 [16.5] 30.9 [9.1] 3.7	55.0 [16.1] 29.0 [8.5] 3.7	54.3 [15.9] 39.7 [11.6] 3.8	52.3 [15.3] 36.2 [10.6] 3.7	51.0 [14.9] 33.9 [9.9] 3.6	50.3 [14.7] 44.9 [13.2] 3.7	48.4 [14.2] 40.8 [12.0] 3.6	47.2 [13.8] 38.3 [11.2] 3.6
	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	57.0 [16.7] 33.2 [9.7] 3.9	54.8 [16.1] 30.2 [8.9] 3.9	53.5 [15.7] 28.4 [8.3] 3.8	52.7 [15.4] 39.0 [11.4] 3.9	50.8 [14.9] 35.4 [10.4] 3.8	49.6 [14.5] 33.3 [9.8] 3.8	48.7 [14.3] 44.1 [12.9] 3.9	46.9 [13.7] 40.1 [11.8] 3.8	45.8 [13.4] 37.7 [11.0] 3.7
D R Y B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	55.4 [16.2] 32.4 [9.5] 4.1	53.3 [15.6] 29.4 [8.6] 4.0	52.0 [15.2] 27.6 [8.1] 4.0	51.1 [15.0] 38.1 [11.2] 4.1	49.2 [14.4] 34.7 [10.2] 4.0	48.1 [14.1] 32.5 [9.5] 3.9	47.1 [13.8] 43.3 [12.7] 4.0	45.4 [13.3] 39.4 [11.5] 4.0	44.3 [13.0] 37.0 [10.8] 3.9
BULB T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	53.7 [15.7] 31.4 [9.2] 4.3	51.7 [15.2] 28.6 [8.4] 4.2	50.5 [14.8] 26.9 [7.9] 4.2	49.5 [14.5] 37.2 [10.9] 4.2	47.6 [14.0] 33.8 [9.9] 4.2	46.5 [13.6] 31.8 [9.3] 4.1	45.5 [13.3] 42.4 [12.4] 4.2	43.8 [12.8] 38.5 [11.3] 4.1	42.7 [12.5] 36.2 [10.6] 4.1
TEMPERATURE	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	52.0 [15.2] 30.4 [8.9] 4.5	50.0 [14.7] 27.7 [8.1] 4.4	48.9 [14.3] 26.0 [7.6] 4.3	47.8 [14.0] 36.2 [10.6] 4.4	46.0 [13.5] 32.9 [9.6] 4.4	44.9 [13.2] 30.9 [9.1] 4.3	43.7 [12.8] 41.4 [12.1] 4.4	42.1 [12.3] 37.6 [11.0] 4.3	41.1 [12.0] 35.3 [10.3] 4.3
RATU	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	50.2 [14.7] 29.4 [8.6] 4.7	48.3 [14.2] 26.7 [7.8] 4.6	47.2 [13.8] 25.1 [7.4] 4.5	46.0 [13.5] 35.1 [10.3] 4.6	44.3 [13.0] 31.9 [9.3] 4.6	43.2 [12.7] 30.0 [8.8] 4.5	42.0 [12.3] 40.3 [11.8] 4.6	40.4 [11.8] 36.6 [10.7] 4.5	39.4 [11.5] 34.4 [10.1] 4.5
E °F °C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	48.4 [14.2] 28.2 [8.3] 4.9	46.6 [13.7] 25.7 [7.5] 4.8	45.5 [13.3] 24.1 [7.1] 4.8	44.2 [13.0] 34.0 [10.0] 4.9	42.5 [12.5] 30.9 [9.1] 4.8	41.5 [12.2] 29.0 [8.5] 4.7	40.2 [11.8] 39.1 [11.5] 4.8	38.7 [11.3] 35.6 [10.4] 4.7	37.7 [11.0] 33.4 [9.8] 4.7
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	46.5 [13.6] 27.0 [7.9] 5.1	44.8 [13.1] 24.6 [7.2] 5.1	43.7 [12.8] 23.1 [6.8] 5.0	42.3 [12.4] 32.7 [9.6] 5.1	40.7 [11.9] 29.8 [8.7] 5.0	39.7 [11.6] 28.0 [8.2] 5.0	38.3 [11.2] 37.9 [11.1] 5.1	36.8 [10.8] 34.5 [10.1] 5.0	36.0 [10.6] 32.4 [9.5] 4.9
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	44.6 [13.1] 25.7 [7.5] 5.4	42.9 [12.6] 23.4 [6.9] 5.3	41.9 [12.3] 21.9 [6.4] 5.2	40.4 [11.8] 31.4 [9.2] 5.4	38.8 [11.4] 28.6 [8.4] 5.3	37.9 [11.1] 26.9 [7.9] 5.2	36.3 [10.6] 36.3 [10.6] 5.3	35.0 [10.3] 33.3 [9.8] 5.2	34.1 [10.0] 31.3 [9.2] 5.2

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

COOLING PERFORMANCE DATA-RGEXZS060A

	ENTERING INDOOR AIR @ 80°F [26.7°C] dbe ①										
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
CFM [L/s]		2150 [1015]	1800 [850]	1550 [732]	2150 [1015]	1800 [850]	1550 [732]	2150 [1015]	1800 [850]	1550 [732]	
		DR ①	.05	.09	.12	.05	.09	.12	.05	.09	.12
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	71.4 [20.9] 40.3 [11.8] 4.3	69.0 [20.2] 37.0 [10.8] 4.2	67.2 [19.7] 34.6 [10.1] 4.2	66.7 [19.5] 46.2 [13.5] 4.2	64.4 [18.9] 42.4 [12.4] 4.2	62.8 [18.4] 39.6 [11.6] 4.1	62.0 [18.2] 52.1 [15.3] 4.2	59.9 [17.6] 47.8 [14.0] 4.1	58.4 [17.1] 44.7 [13.1] 4.0
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	69.7 [20.4] 39.6 [11.6] 4.5	67.3 [19.7] 36.3 [10.6] 4.4	65.6 [19.2] 33.9 [9.9] 4.3	65.0 [19.1] 45.5 [13.3] 4.4	62.7 [18.4] 41.7 [12.2] 4.3	61.2 [17.9] 39.0 [11.4] 4.3	60.3 [17.7] 51.4 [15.1] 4.3	58.2 [17.1] 47.1 [13.8] 4.3	56.7 [16.6] 44.0 [12.9] 4.2
OUTDOOR	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	67.9 [19.9] 38.8 [11.4] 4.7	65.6 [19.2] 35.6 [10.4] 4.6	63.9 [18.7] 33.3 [9.8] 4.5	63.2 [18.5] 44.7 [13.1] 4.6	61.0 [17.9] 41.0 [12.0] 4.5	59.5 [17.4] 38.3 [11.2] 4.5	58.5 [17.1] 50.6 [14.8] 4.5	56.5 [16.6] 46.4 [13.6] 4.4	55.1 [16.1] 43.4 [12.7] 4.4
	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	66.1 [19.4] 38.1 [11.2] 4.9	63.9 [18.7] 34.9 [10.2] 4.8	62.3 [18.3] 32.6 [9.6] 4.7	61.4 [18.0] 44.0 [12.9] 4.8	59.3 [17.4] 40.3 [11.8] 4.7	57.8 [16.9] 37.7 [11.0] 4.6	56.7 [16.6] 49.8 [14.6] 4.7	54.8 [16.1] 45.7 [13.4] 4.6	53.4 [15.7] 42.7 [12.5] 4.6
DRY BU	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	64.4 [18.9] 37.3 [10.9] 5.1	62.2 [18.2] 34.2 [10.0] 5.0	60.6 [17.8] 32.0 [9.4] 4.9	59.7 [17.5] 43.2 [12.7] 5.0	57.6 [16.9] 39.6 [11.6] 4.9	56.2 [16.5] 37.0 [10.8] 4.9	55.0 [16.1] 49.1 [14.4] 4.9	53.1 [15.6] 45.0 [13.2] 4.8	51.8 [15.2] 42.1 [12.3] 4.8
L B	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	62.6 [18.3] 36.6 [10.7] 5.3	60.5 [17.7] 33.5 [9.8] 5.2	58.9 [17.3] 31.3 [9.2] 5.1	57.9 [17.0] 42.4 [12.4] 5.2	55.9 [16.4] 38.9 [11.4] 5.1	54.5 [16.0] 36.4 [10.7] 5.1	53.2 [15.6] 48.3 [14.2] 5.2	51.4 [15.1] 44.3 [13.0] 5.1	50.1 [14.7] 41.4 [12.1] 5.0
T M P E R	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	60.8 [17.8] 35.8 [10.5] 5.5	58.8 [17.2] 32.8 [9.6] 5.4	57.3 [16.8] 30.7 [9.0] 5.4	56.1 [16.4] 41.7 [12.2] 5.5	54.2 [15.9] 38.2 [11.2] 5.4	52.9 [15.5] 35.7 [10.5] 5.3	51.4 [15.1] 47.6 [14.0] 5.4	49.7 [14.6] 43.6 [12.8] 5.3	48.4 [14.2] 40.8 [12.0] 5.2
A	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	59.1 [17.3] 35.0 [10.3] 5.8	57.1 [16.7] 32.1 [9.4] 5.7	55.6 [16.3] 30.0 [8.8] 5.6	54.4 [15.9] 40.9 [12.0] 5.7	52.5 [15.4] 37.5 [11.0] 5.6	51.2 [15.0] 35.1 [10.3] 5.6	49.7 [14.6] 46.8 [13.7] 5.7	48.0 [14.1] 42.9 [12.6] 5.6	46.8 [13.7] 40.1 [11.8] 5.5
Ü R E °F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	57.3 [16.8] 34.3 [10.1] 6.1	55.4 [16.2] 31.4 [9.2] 6.0	54.0 [15.8] 29.4 [8.6] 5.9	52.6 [15.4] 40.2 [11.8] 6.0	50.8 [14.9] 36.8 [10.8] 5.9	49.5 [14.5] 34.4 [10.1] 5.8	47.9 [14.0] 46.1 [13.5] 5.9	46.3 [13.6] 42.2 [12.4] 5.8	45.1 [13.2] 39.5 [11.6] 5.8
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	55.5 [16.3] 33.5 [9.8] 6.4	53.7 [15.7] 30.7 [9.0] 6.3	52.3 [15.3] 28.7 [8.4] 6.2	50.9 [14.9] 39.4 [11.5] 6.3	49.1 [14.4] 36.1 [10.6] 6.2	47.9 [14.0] 33.8 [9.9] 6.1	46.2 [13.5] 45.3 [13.3] 6.2	44.6 [13.1] 41.5 [12.2] 6.1	43.5 [12.7] 38.8 [11.4] 6.1
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	53.8 [15.8] 32.8 [9.6] 6.7	51.9 [15.2] 30.0 [8.8] 6.6	50.6 [14.8] 28.1 [8.2] 6.5	49.1 [14.4] 38.6 [11.3] 6.6	47.4 [13.9] 35.4 [10.4] 6.5	46.2 [13.5] 33.1 [9.7] 6.4	44.4 [13.0] 44.4 [13.0] 6.5	42.9 [12.6] 40.8 [12.0] 6.4	41.8 [12.3] 38.2 [11.2] 6.3

DR —Depression ratio

dbE —Entering air dry bulb

wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

AIRFLOW TARGETS

RGEAZS024				
THERMOSTAT CALL	NOMINAL CFM			
High Cooling	800			
Low Cooling	600			
60k Heating	750			
Fan	400			
Manufacturer Recommended Cooling Airflow (Min./Max.)	700 / 900			

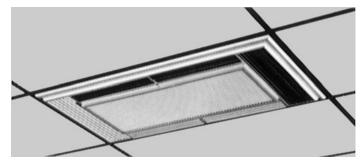
RGEAZS036					
THERMOSTAT CALL	NOMINAL CFM				
High Cooling	1200				
Low Cooling	800				
100k High Heat	1540				
80k Heat	1465				
60k Heat	985				
Fan	600				
Manufacturer Recommended Cooling Airflow (Min./Max.)	1050 / 1350				

RGEXZS048				
THERMOSTAT CALL	NOMINAL CFM			
High Cooling	1525			
Low Cooling	1000			
100k High Heat	1465			
100k Low Heat	1273			
80k High Heat	1265			
80k Low Heat	1110			
Manufacturer Recommended Cooling Airflow (Min./Max.)	1400 / 1800			

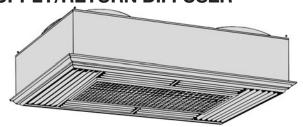
RGEXZS060				
THERMOSTAT CALL	NOMINAL CFM			
High Cooling	1800			
Low Cooling	1200			
100k High Heat	1600			
100k Low Heat	1296			
80k High Heat	1240			
80k Low Heat	1065			
Manufacturer Recommended Cooling Airflow (Min./Max.)	1750 / 2250			

			ELECTRICA	AL DATA - RO	EAZS SERIES	S		
		024AJV06	036ACV06	036ACV08	036ACV10	036AJV06	036AJV08	036AJV10
	Unit Operating Voltage Range	187-253	187-253	187-253	187-253	187-253	187-253	187-253
_	Volts	208/230	208/230	208/230	208/230	208/230	208/230	208/230
atio	Phase	1	3	3	3	1	1	1
Ĕ	Hz	60	60	60	60	60	60	60
重	Minimum Circuit Ampacity	18	21	21	21	29	29	29
Unit Information	Minimum Overcurrent Protection Device Size	25	25	25	25	35	35	35
	Maximum Overcurrent Protection Device Size	25	25	25	25	40	40	40
	No.	1	1	1	1	1	1	1
	Volts	208/230	208/230	208/230	208/230	208/230	208/230	208/230
=	Phase	1	3	3	3	1	1	1
Met	RPM	3500	3500	3500	3500	3500	3500	3500
, -	HP, Compressor 1							
ress	Amps (RLA), Comp. 1	10.9	8.8	8.8	8.8	15.3	15.3	15.3
Compressor Motor	Amps (LRA), Comp. 1	55.2	70	70	70	78.1	78.1	78.1
ၓ	HP, Compressor 2							
	Amps (RLA), Comp. 2							
	Amps (LRA), Comp. 2							
_	No.	1	1	1	1	1	1	1
Condenser Motor	Volts	208/230	208/230	208/230	208/230	208/230	208/230	208/230
e S	Phase	1	1	1	1	1	1	1
ens	HP	1/6	1/3	1/3	1/3	1/3	1/3	1/3
D HO	Amps (FLA, each)	0.6	1.5	1.5	1.5	1.5	1.5	1.5
၁	Amps (LRA, each)	1.5	3	3	3	3	3	3
	No.	1	1	1	1	1	1	1
Evaporator Fan	Volts	208/230	208/230	208/230	208/230	208/230	208/230	208/230
ţ	Phase	1	1	1	1	1	1	1
ora	HP	1/3	1	1	1	1	1	1
Eva į	Amps (FLA, each)	2.8	7.6	7.6	7.6	7.6	7.6	7.6
_	Amps (LRA, each)							

	ELECTRICAL DATA - RGEXZS SERIES								
		048ACV08	048ACV10	048AJV08	048AJV10	060ACV08	060ACV10	060AJV08	060AJV10
	Unit Operating Voltage Range	187-253	187-253	187-253	187-253	187-253	187-253	187-253	187-253
_	Volts	208/230	208/230	208/230	208/230	208/230	208/230	208/230	208/230
atio	Phase	3	3	1	1	3	3	1	1
Ë	Hz	60	60	60	60	60	60	60	60
≝	Minimum Circuit Ampacity	26	26	35	35	28	28	39	39
Unit Information	Minimum Overcurrent Protection Device Size	30	30	40	40	35	35	45	45
	Maximum Overcurrent Protection Device Size	35	35	50	50	40	40	60	60
	No.	1	1	1	1	1	1	1	1
	Volts	208/230	208/230	208/230	208/230	208/230	208/230	208/230	208/230
=	Phase	3	3	1	1	3	3	1	1
	RPM	3500	3500	3500	3500	3500	3500	3500	3500
Compressor Motor	HP, Compressor 1								
ress	Amps (RLA), Comp. 1	12.6	12.6	19.9	19.9	14	14	23.5	23.5
Ē	Amps (LRA), Comp. 1	123	123	109	109	93	93	118	118
3	HP, Compressor 2								
	Amps (RLA), Comp. 2								
	Amps (LRA), Comp. 2								
_	No.	1	1	1	1	1	1	1	1
물	Volts	208/230	208/230	208/230	208/230	208/230	208/230	208/230	208/230
ž	Phase	1	1	1	1	1	1	1	1
ens(HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Condenser Motor	Amps (FLA, each)	2	2	2	2	2	2	2	2
<u>ت</u>	Amps (LRA, each)	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
	No.	1	1	1	1	1	1	1	1
Fa	Volts	208/230	208/230	208/230	208/230	208/230	208/230	208/230	208/230
Evaporator Fan	Phase	1	1	1	1	1	1	1	1
0 1 2	HP	1	1	1	1	1	1	1	1
.va	Amps (FLA, each)	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6
_	Amps (LRA, each)								


ACCESSORY EQUIPMENT

Accessory Description	Model Application	Accessory Model No.
	RGEA	RXSG-AAA08 (8" [203 mm] Height)
Roofcurb	RGEA	RXSG-AAA14 (14" [356 mm] Height)
ROOICUID	RGEX	RXSG-AXA14 (14" [356 mm] Height)
	RGEX	RXSG-AXA24 (24" [610 mm] Height)
Curb Adapter ("A" footprint to "X" footprint)	RGEX	RXRX-DXCAE
Duct Adapter Sideflow Square to Round Transition	RGE(A/X)	AXMC-BA01
Supply & Return Diffusers	RGE(A/X)	RXRN-BD15
Postangular to Pound Transition (Downflow)	DCE(A/V)	RXMC-CA02 (16" [406 mm] Ducts)
Rectangular to Round Transition (Downflow)	RGE(A/X)	RXMC-CA03 (18" [457 mm] Ducts)
Economizers (Convertible)	RGEA	AXRD-01RACAM3
Economizers (Convertible)	RGEX	RXRE-11RXCAM3
Dual Enthalpy Kit	RGEA	RXRX-AV04
Dual Elithalpy Kit	RGEX	RXRX-BV03
	RGEA	AXRF-FAA1 (Fixed-35%)
Fresh Air Damper		AXRF-FAB1 (Motorized-35%)
riesii Ali Daliipei	RGEX	RXRF-FAA2 (Fixed-35%)
	NGEA	RXRF-FAB2 (Motorized-35%)
	RGEA	RXGJ-EP94D
	RGEXZS048AJV082	RXGJ-FP44
LP Conversion Kits ¹	RGEXZS048AJV102	RXGJ-FP45
	RGEXZS060AJV082	RXGJ-FP46
	RGEXZS060AJV102	RXGJ-FP47
F9. 10	RGEA	RXRY-B01
Filter Kit	RGEX	RXRY-B02
Split Door Design Kit	RGEX	RXRX-SDX01
Low Ambient Control	RGE(A/X)	RXPZ-G01
Low Pressure Control	RGE(A/X)	RXAC-C01
Phase Monitor Kit	3ph-RGE(A/X)	RXRX-PM3A01


¹If a particular unit is to be converted to operate on LP (propane) for elevations above 2000 ft. [609.6 m] in Canada, the existing Natural Gas to LP Conversion Kits for the subject models already contain the necessary orifices and instructions to de-rate the input for 2000-4500 ft. [609.6-1371.6 m] Canadian applications.

2High pressure switches are standard for RGE(A/X) Models.

COMMON SUPPLY/RETURN CONCENTRIC AIR DIFFUSER

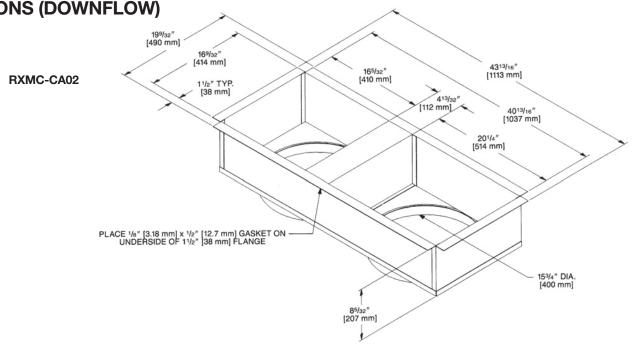
SUPPLY/RETURN DIFFUSER

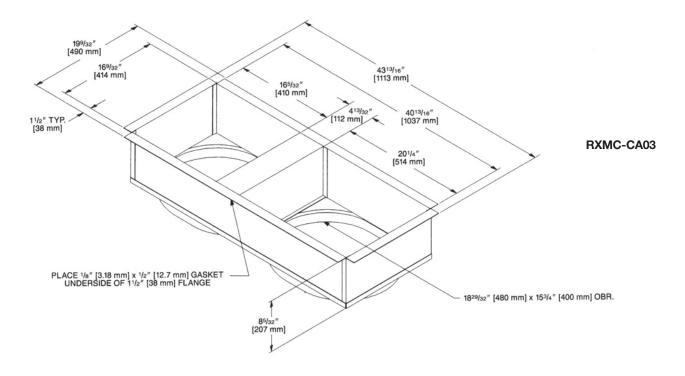
Designed to convert a side by side or an over and under arrangement into a concentric distribution of air. The diffuser is flush mounted, completely insulated, assembled, and internally baffled to provide four way supply air distribution with a center return. To make the assembly complete and ready to fit into a 2' [0.61 m] x 4' [1.22 m] suspended ceiling grid, the diffuser includes adjustable supply louvers, hanging rings, anti-sweat gasket, and round flanges for use with flexible ducts.

Model No.	Diameter	Shipping Wt.	Dimension A
RXRN-	Inches [mm]	Lbs. [kg]	Inches [mm]
BD15	16 [406]	90 [40.82]	201/2 [521]

DIFFUSER INSTALLS FLUSH WITH CEILING 22'le" [562 mm] 1'l2" [38 mm] [281 mm] [479 mm] 473/4" [1213 mm] [603 mm]

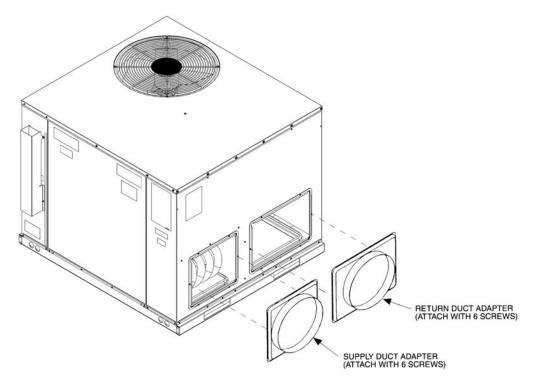
NOTE: The location of the combination supply and return diffuser should not exceed 10 feet [3.05 m] above the floor level for units @ 1000 CFM [472 L/s] or less and 12 [3.66 m] to 14 feet [4.27 m] above the floor level for units with CFM greater than 1000 [472 L/s]. If the diffuser is installed with a greater distance than recommended above, the supply air may become stratified above the required comfort area causing uncomfortable conditions.

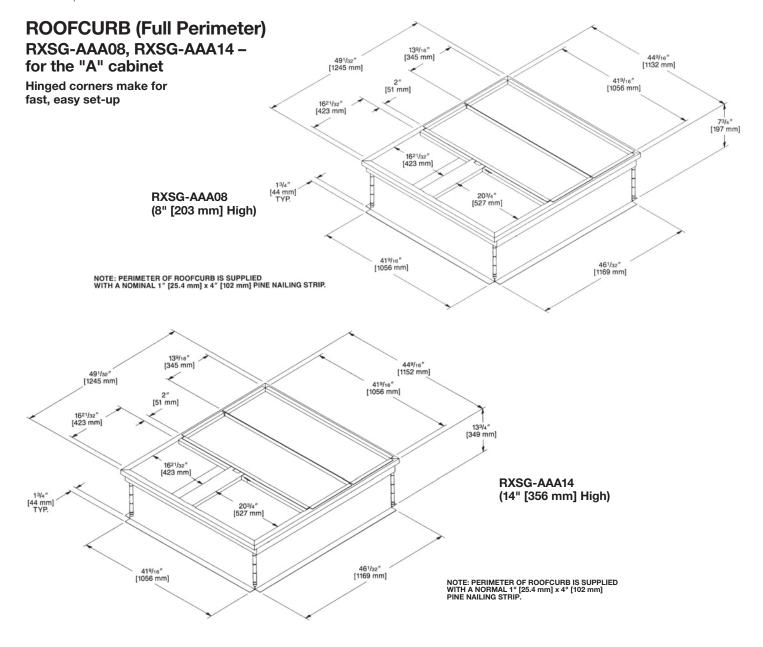

AIRFLOW/PRESSURE DROP INFORMATION (INCHES W.C. [kPa])


Ассосони	Appr	Approximate CFM [L/s]-Supply Air					
Accessory	1300 [614]	1575 [743]	1800 [850]	2200 [1038]			
Plenum & Supply/Return Duct	.07 [.017]	.10 [.024]	.12 [.030]	.17 [.042]			
Diffuser	.09 [.022]	.13 [.032]	.16 [.040]	.24 [.060]			
Economizer	.06 [.015]	.09 [.022]	.11 [.027]	.17 [.042]			

SUPPLY AIR/PERFORMANCE

Diffuser Airflow CFM [L/s]	Range of Throw Ft. [m]
800 [378]-1200 [566]	14 [4.27]-16 [4.88]
1600 [755]-2000 [944]	18 [5.49]-28 [8.53]


DUCT ADAPTERS RECTANGULAR TO ROUND TRANSITIONS (DOWNFLOW)



DUCT ADAPTER SIDEFLOW SQUARE TO ROUND TRANSITION AXMC-BA01

Adapts the side rectangular supply and return openings to 14" [356 mm] diameter round openings. Adapters provided with same finish as unit and also provided with thermal insulation.

ROOFCURB (Full Perimeter)
RXSG-AXA14, RXSG-AXA24 - for
the "X" cabinet

Hinged corners make for fast, easy set-up

RXSG-AXA14 (14" [356 mm] Height)

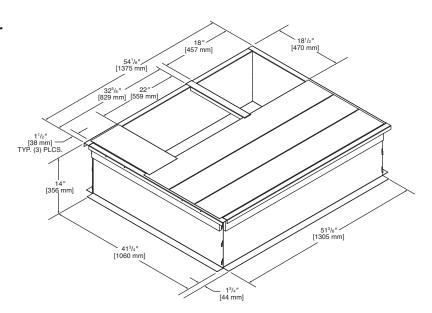
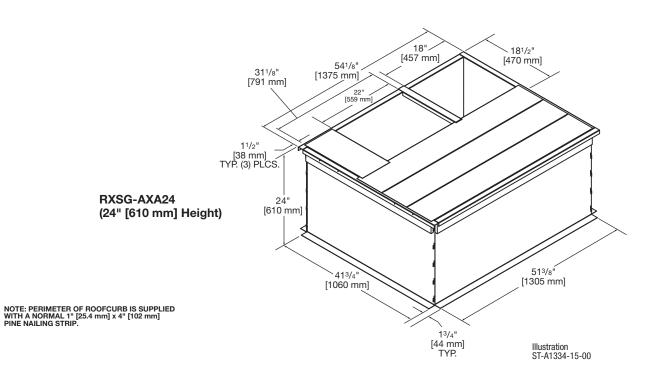
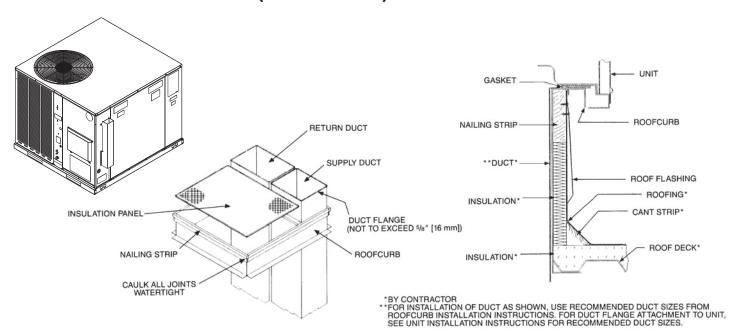




Illustration ST-A1334-14-00

PACKAGED AIR CONDITIONERS & PACKAGED GAS/ELECTRIC UNITS ROOFCURB INSTALLATION (Full Perimeter)

ROOFCURB ADAPTERS

Fabricated from galvanized steel to adapt the New cabinet to the old style curb. All are furnished with a New gasket.

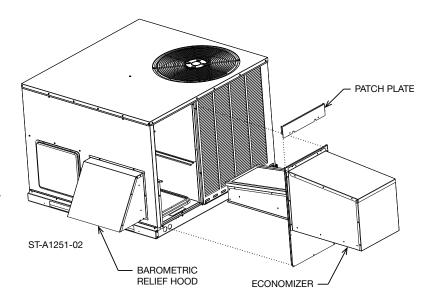
OLD MODEL OLD CURB MODEL "A" CABINET TO OLD MODEL "A" CABINET PACKAGE **ROOF ADAPTER SMALL CABINET** (11/2-2 TON) [5.28-7.03 KW] 20 SERIES RXPA-CA20 (1) RSNC-, RSND-, RSNE-RRGE-, RRGF-, RRGG-, RSNY RXRX-BACDB20 **MEDIUM CABINET** (21/2-3 TON) [8.79-10.55 KW] ➤RXRX-BACDB21 21 SERIES RXRA-DB21 (2) **RGEA** RSNC-, RSND-, RSNE-RXRX-BCCCA23 RRGE-, RRGF-, RRGG-, RSNY RXRX-BCCDB23 **EXTRA LARGE CABINET** (31/2-5 TON) [12.31-17.58 KW] RXPA-CA23 (1) 23 SERIES RSNC-, RSND-, RSNE-RXRA-DB23 (2) RRGE-, RRGF-, RRGG-, RSNY (4-5 TON) [14.07-17.58 kW] (1) SLOPE TYPE "A" CABINET TO "X" "X" CABINET PACKAGE (2) FULL PERIMETER TYPE **CABINET ADAPTER** - RXRX-DXCAE RGEX-

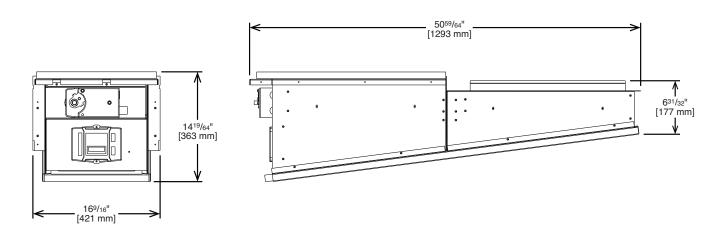
FRESH AIR DAMPER

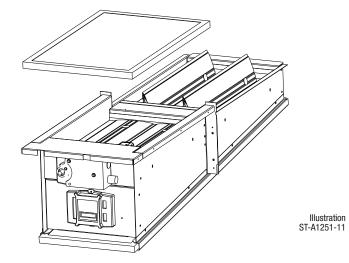
AXRF-FAA1 (Fixed - 0-35%) - RGEA AXRF-FAA2 (Fixed - 0-35%) - RGEX The 0-35% manual outside Air Damper is designed to replace the unit return air duct cover. No drilling or damper assembly is required. The amount of outside air (0-35%) is controlled by simply adjusting the side damper. AXRF-FAB1 (Motorized - 0-35%) - RGEA AXRF-FAB2 (Motorized - 0-35%) - RGEX The 0-35% motorized outside Air Damper is designed to replace the unit return air duct cover. No drilling or damper assembly is required. The control motor opens the adjustable slide damper when the unit blower motor is energized. CAULK INSIDE OF CORNERS (TYP. 4 PLACES) (304112) MATERIAL **AXRF-FAA1** 201/2" [521 mm] **AXRF-FAB1** SHIP HOOD REMOVED 151/e" [384 mm] (304101) GASKET 1/8" [3.18 mm] x 1/2" [12.7 mm] 5/8" [15.87 mm] FLANGE ON BACK SIDE 13³/₄" [349 mm] CAULK INSIDE OF CORNERS (TYP. 4 PLACES) (304112) MATERIAL .548 [13.92 mm] SHIP HOOD REMOVED 153/4 **AXRF-FAA2** [400.05 mm] **AXRF-FAB2** (304101) GASKET 1/8" [3.18mm] x 1/2" [12.70 mm] 5/8" [15.87 mm] FLANGE ON BACK SIDE [349.25 mm] 1263/64 Illustration

[] Designates Metric Conversions

[329.83 mm]

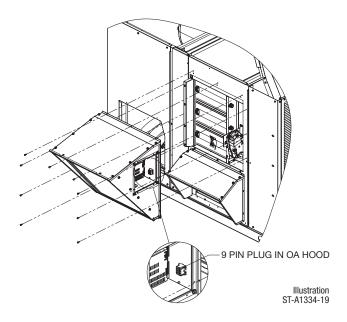

ST-A1334-12-00

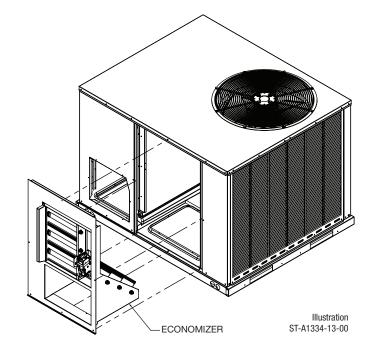



ECONOMIZERS

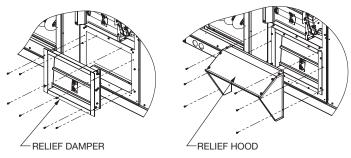
AXRD-01RACAM3 (Fully Modulating) Horizontally and Vertically Applicable for the "A" cabinet

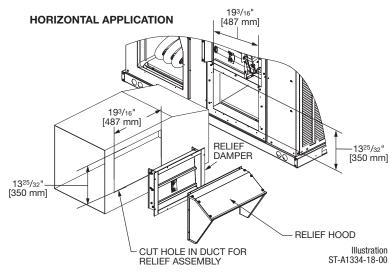
- LCD Screen for Continuous diagnostic and system status
- Programmable set points for accurate positioning
- · Simplified wiring and color coded terminals
- Onboard fault detection and diagnostics (FDD)
- Operational Checkout to verify installation
- Enthalpy sensors and actuator that communicate through a Sylk Bus Network with the Jade Controller reducing wiring errors while providing more information
- CO₂ sensor input for DCV (Demand Control Ventilation) applications
- RXRX-AV04 Dual Enthalpy kit available for field installation
- AMCA licensed class 1A low leak Dampers

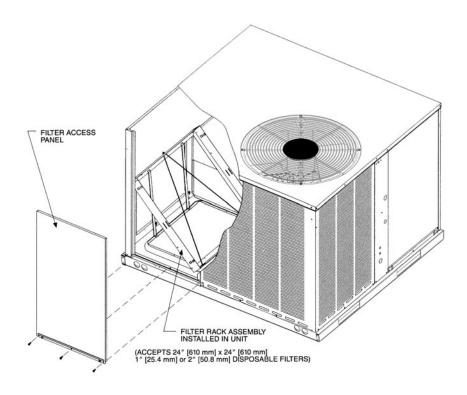




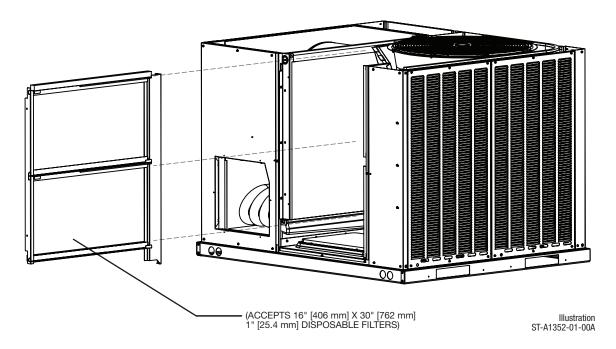
ECONOMIZERS RXRE-11RXCAM3


Horizontally and Vertically Applicable for the "X" cabinet


- LCD Screen for Continuous diagnostic and system status
- Programmable set points for accurate positioning
- Simplified wiring and color coded terminals
- Onboard fault detection and diagnostics (FDD)
- Operational Checkout to verify installation
- Enthalpy sensors and actuator that communicate with Siemens controller reducing wiring errors while providing more information
- Setup and configure the economizer controller Ûefore putting it into usage by using the Climatix Mobile app or the inbuilt display
- CO₂ sensor input for demand control ventilation (DCV) applications
- RXRX-BV03 dual enthalpy kit available for field installation
- AMCA licensed class 1A low leak dampers


VERTICAL APPLICATION

FILTER KIT INSTALLATION RXRY-B01


For use in either vertical or horizontal discharge with the "A" cabinet

Airflow Pressure Drop, Inches W.C. [kPa]						
CFM [L/s]	1" Filter	2" Filter				
500 [236]	.02 [.0050]	.03 [.0075]				
600 [283]	.02 [.0050]	.03 [.0075]				
700 [330]	.03 [.0075]	.04 [.0010]				
800 [378]	.04 [.0010]	.05 [.0124]				
900 [425]	.05 [.0124]	.06 [.0149]				
1000 [472]	.07 [.0174]	.08 [.0199]				
1100 [519]	.08 [.0199]	.09 [.0224]				
1200 [566]	.10 [.0249]	.12 [.0299]				
1300 [614]	.13 [.0324]	.15 [.0373]				
1400 [661]	.16 [.0398]	.19 [.0473]				
1500 [708]	.19 [.0473]	.21 [.0523]				
1600 [755]	.20 [.0498]	.23 [.0572]				
1700 [802]	.21 [.0523]	.24 [.0598]				
1800 [850]	.22 [.0548]	.25 [.0623]				
1900 [897]	.24 [.0598]	.27 [.0672]				
2000 [944]	.26 [.0647]	.29 [.0722]				

FILTER KIT INSTALLATION RXRY-B02

For use in either vertical or horizontal discharge with the "X" cabinet

[] Designates Metric Conversions

Airflow Pressure Drop (1" filter)	
CFM [L/s]	Inches W.C. [kPa]
600 [283]	0.01 [0.002]
800 [378]	0.01 [0.002]
1000 [472]	0.02 [0.005]
1200 [566]	0.03 [0.008]
1400 [661]	0.05 [0.012]
1600 [755]	0.07 [0.017]
1800 [850]	0.08 [0.021]
2000 [944]	0.10 [0.026]

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Rheem will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Heat Exchange

Factory StandardTen (10) Years Stainless Steel/1-Phase & 3-Phase Models Commercial ApplicationTwenty (20) Years Stainless Steel/1-Phase Models Residential ApplicationLimited Lifetime

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Conditional Parts (Registration Required)

Phase, Residential Applications......Ten (10) Years

Compressor
 Phase, Residential Applications.....Ten (10) Years
 & 3 Phase, Commercial Applications......Five (5) Years

Parts
Commercial Applications.....One (1) Year

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.

© 2024 Rheem Manufacturing Company. Rheem trademarks owned by Rheem Manufacturing Company. In keeping with its policy of continuous progress and product improvement, Rheem reserves the right to make changes without notice.

5600 Old Greenwood Road Fort Smith, Arkansas 72908 • www.rheem.com 125 Edgeware Road, Unit 1 Brampton, Ontario • L6Y 0P5

